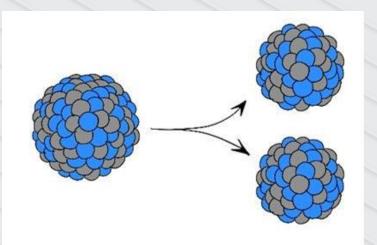
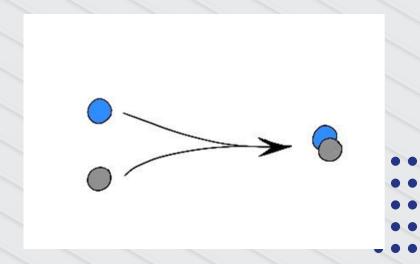


Nuclear Fusion as a future energy source?


Woo Pok Man Hei Nok

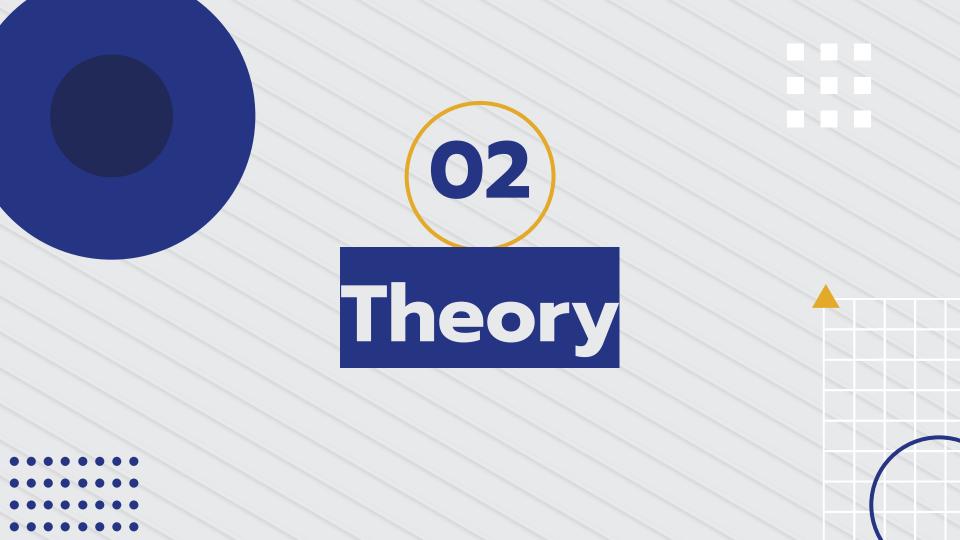

Nuclear energy

0

- Nuclear fission
 - Heavy nucleus split into two
 - More radioactive
 - Easier to achieve and sustain

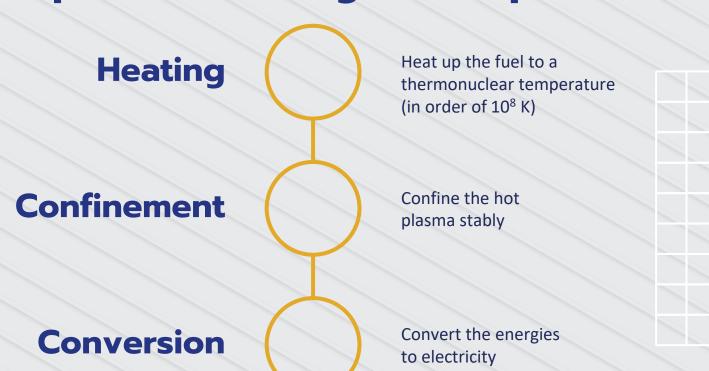
- Nuclear fusion
 - Two light nuclei combine into one
 - More energy density
 - More adequate fuel

Nuclear fusion



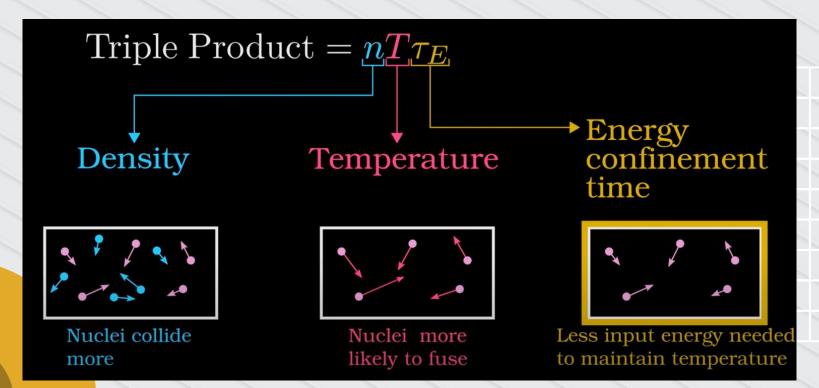
- Mostly adopted nuclear fusion equation $D + T \rightarrow {}^{4}_{2}He + n + 17.6 \text{ MeV}$
- Requires high temperature to overcome strong repulsion (~10⁸K)
 - Heat the fuel to become plasma
- Can achieve artificial nuclear fusion, though inefficiently
- Deuterium can be found in heavy water
- Tritium is produced by the process:

$$_{3}^{6}\text{Li} + n \rightarrow _{2}^{4}\text{He} + T + 4.8 \text{ MeV}$$

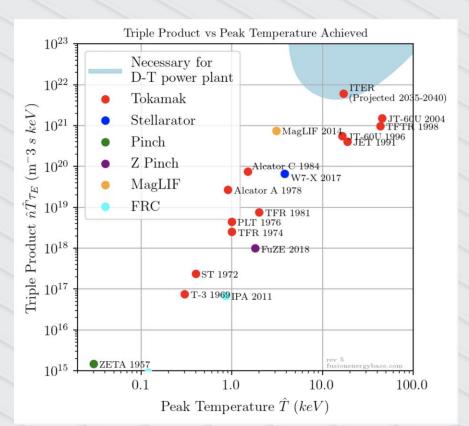


Steps of achieving fusion power

Confinement - the hard one

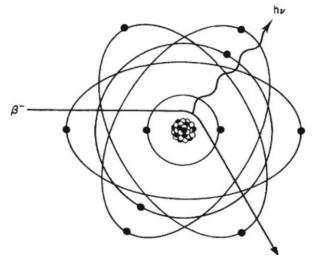

Confinement of the hot plasma

- Hot plasma exerts outside pressure -> disassemble itself
 - Nuclei spread too out to each other
 - Heat conducted to walls and lost
 - Hot plasma is unstable
 - o Turbulence
 - o Bremsstrahlung



The Triple Product

The Triple Product



Bremsstrahlung

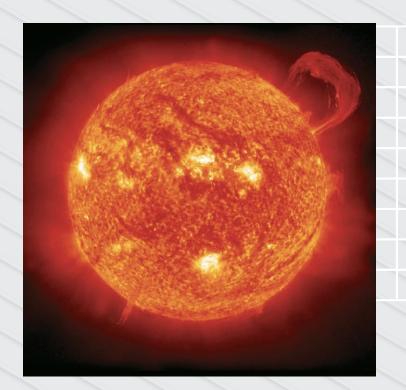
- "Braking radiation" in German
- Charged particles emit photon when deflected i.e decelerated

$$hv = E_i - E_f$$

emitted photons usually leave the plasma,
 so as the energies.

Bremsstrahlung

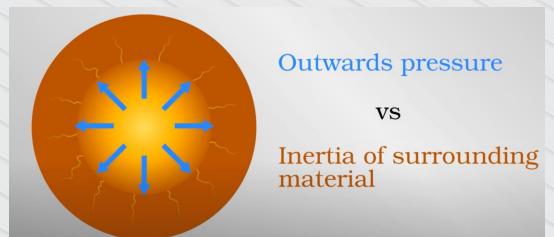
Bremsstrahlung power density in plasma


$$P_{
m Br}[{
m W/m^3}] = rac{Z_i^2 n_i n_e}{igl[7.69 imes 10^{18} {
m m^{-3}}igr]^2} T_e [{
m eV}]^{rac{1}{2}}.$$

- $P \propto Z^2$ Charge of the constituent ions
- $ightharpoonup P \propto n_i n_e$ Number density of electrons and ions
- Arr P \propto T_e Temperature

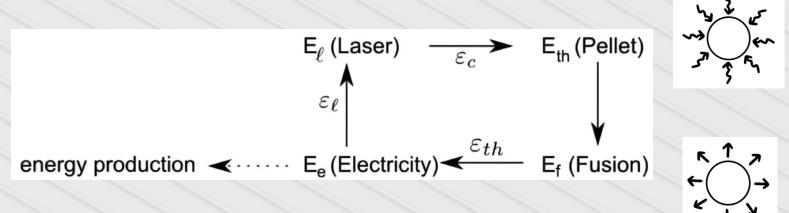
How the sun works

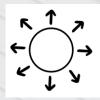
- Sun is massive and huge
 - Gravitational confinement
 - large volume of plasma in a star traps bremsstrahlung
- Hard to be done on earth


Confinement technics

Inertial confinement

- The inertia of the fuel keeps it from escaping
 - o Compressed in dense shell
 - Heated quickly and burns before it has time to escape



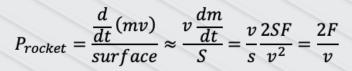


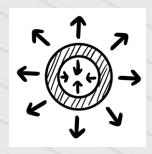
Energy Balance

$$E_{\ell} \simeq \frac{1}{(\varepsilon_{\ell} \varepsilon_{th})^3 \varepsilon_c^4} \left(\frac{n_0}{n}\right)^2 \text{ in MJ}$$

$$E_{\ell} \simeq \frac{1}{(\varepsilon_{\ell} \varepsilon_{th})^3 \varepsilon_c^4} \left(\frac{n_0}{n}\right)^2 \text{ in MJ}$$

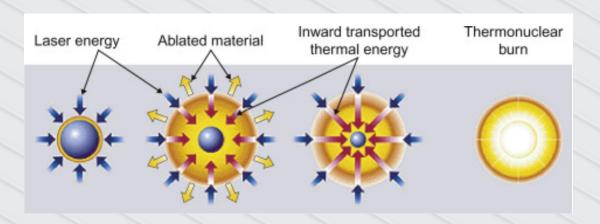
- Take $\varepsilon_c = 0.2$, $\varepsilon_l = 0.08$, $\varepsilon_{th} = 0.4$, $n = n_0 -> E_l \sim 10^7 \text{ MJ}$
 - Where current achieved laser pulse energies < 10 MJ
- Take $\varepsilon_c = 0.2$, $\varepsilon_l = 0.08$, $\varepsilon_{th} = 0.4$, $E_l = 2$ MJ -> n = 3000 n₀
 - \circ Pressure ~ 3000 n₀ T ~ 2 x 10¹⁷ N m⁻²
 - Where current achieved laser pressure ~ 10¹² N m⁻²



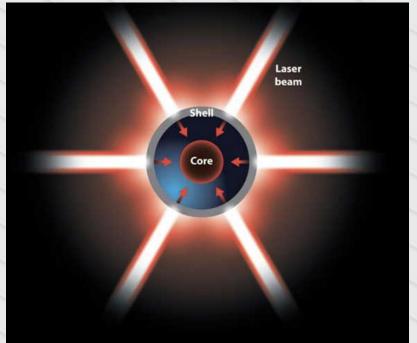


- How to boost the pressure?
- Idea: Generate implosion by ablating matter at the pallet surface
 - Rocket effect: Conservation of momentum

$$F = \frac{P}{S} = \frac{d}{dt} \left(\frac{1}{2} m v^2 \right) \frac{1}{S} \approx \frac{1}{2} \frac{v^2}{S} \frac{dm}{dt}$$
$$\Rightarrow \frac{dm}{dt} = \frac{2SF}{v^2}$$

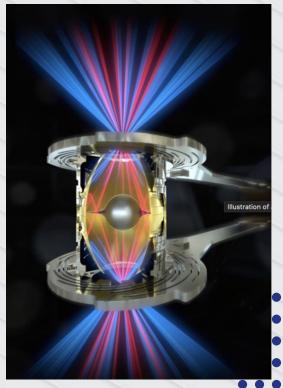

$$\frac{P_{rocket}}{P_{laser}} = \frac{2F}{v} \frac{c}{F} = 2\frac{c}{v} \gg 1$$

The ICF Sequence


- The laser beam heats the surface and forms a plasma
- Outer material ablates and cause rocket effect
- Implosion compress the core to very high density
- The compressed fuel burns

- Pellet directly targeted by hundreds of laser beams
- The beams must be arranged symmetrically

Reports Recommend Stepped-Up U.S. Investment in Fusion Energy - NIF



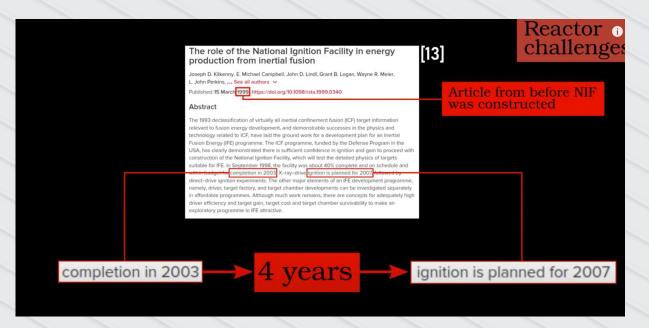
Driving the pellet - Indirect drive

- Hohlraum, a very small, little chamber around the pellet
- Receives the laser beams through two holes
- Acts like a black body radiator of x-rays
- The X-ray bath is more symmetric than the lasers

Challenges

0

- Plasma Instability
- Rayleigh-Taylor Instability
 - Cannot form a central hotspot
- Bremsstrahlung
- No efficient ignition



Challenges

- Pellets and hohlraum are expensive and run out quickly
- Not economical

Confinement technics

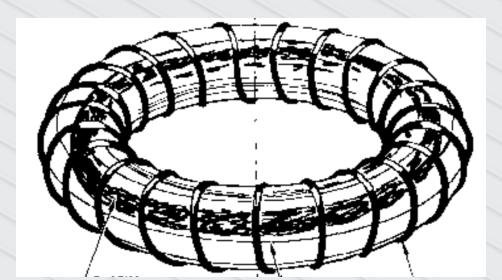
Magnetic confinement

- Magnetic force is a non-contact force
- For charged particles, under B-field, force experienced : $m\frac{d\vec{v}}{dt} = q\vec{v} \times \vec{B}$

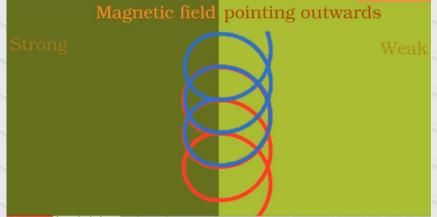
$$m\frac{d\vec{v}}{dt} = q\vec{v} \times \vec{B}$$

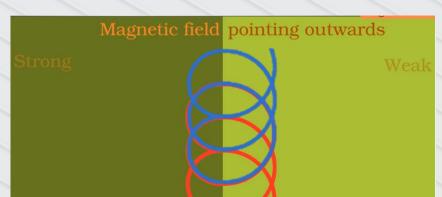
- No work done by B-field
- Helix movement along the B-field line

$$\vec{v} = (v_{\perp} \cos \omega t, -v_{\perp} \sin \omega t, v_{//})$$



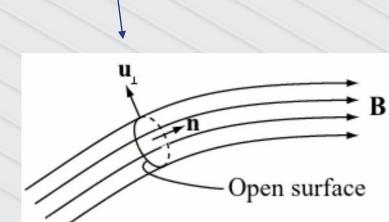
- **Basic principles**
- Torus shape of container is used
- Coils provides (almost) uniform B-field along the z-direction
- Plasma flowing in the torus





 $\overrightarrow{V_{\nabla E}} = \frac{mv^2}{2qB} \frac{\overrightarrow{B} \times \nabla B}{B^2}$

- B-field is not perfectly constant inside the torus
- This cause drifting on charges
- Opposite charges drift to opposite side
- Finally will hit the wall



- Ions in plasma also create magnetic dipole
- Theoretically, the B-field line is "frozen" into plasma

$$\varphi(t) = \int \vec{B} \cdot \hat{n} \, dS$$

$$\frac{d\varphi}{dt} = \int \frac{\partial \vec{B}}{\partial t} \cdot \hat{n} \, dS + \oint \vec{B} \times \hat{u}_{\perp} \cdot d\vec{L}$$

Boundary moving velocity

Magnetohydrodynamics problem

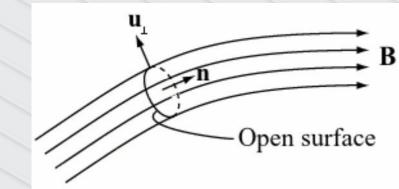
 $\vec{E} = -\vec{v}_{\perp} \times \vec{B}$

By Faraday's Law,

$$\frac{d\varphi}{dt} = -\int \nabla \times \vec{E} \cdot \hat{n} \, dS - \oint \hat{u}_{\perp} \times \vec{B} \cdot d\vec{L}$$

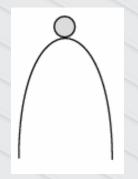
Plasma moving velocity

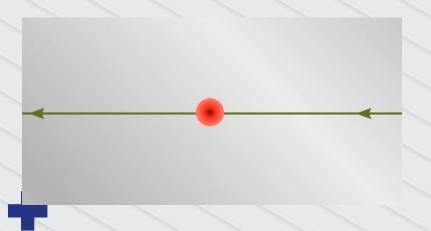
By Stoke's theorem and setting

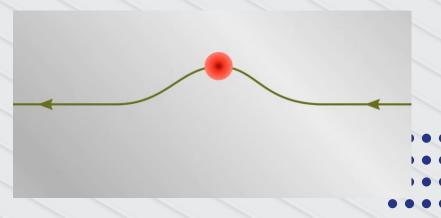

$$\frac{d\varphi}{dt} = \oint [(\overrightarrow{v_{\perp}} - \overrightarrow{u_{\perp}}) \times \overrightarrow{B}] \cdot d\overrightarrow{L} = 0$$

By conservation law of flux,

$$\overrightarrow{v_{\perp}} = \overrightarrow{u_{\perp}}$$


B-field line moves along the plasma





Magnetohydrodynamics problem

- At unstable equilibrium
- Small turbulence would be magnified

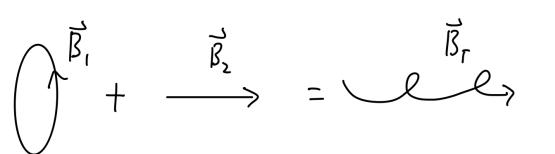
0

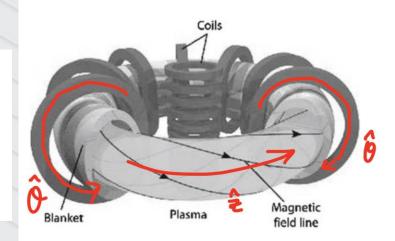
- Invented by Soviet Union in late 1950s
- Stands for <u>TO</u>roidal <u>C</u>hamber <u>MA</u>gnetic <u>C</u>oil

Invented to solve the drifting problem

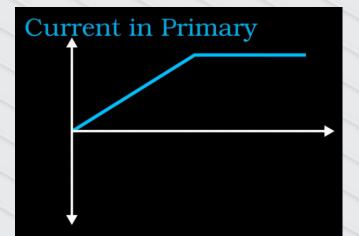
Blanket Plasma Magnetic field line

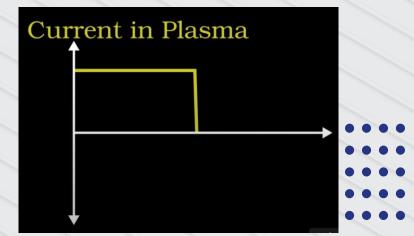
Coils


A Tokmak device

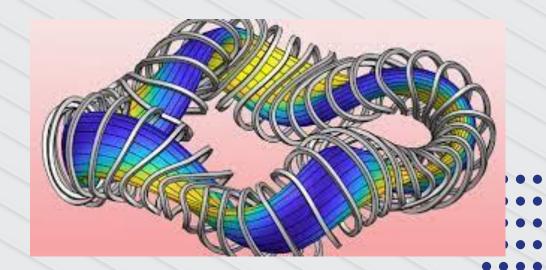


- Insert a circulating coil at the centre of the torus
- Induce the plasma to circulate aglon z-direction (Transformer)
- creates B-field along θ-direction
- Combine the original B-field in z-direction to form a helical B-field
- Solve the drifting problem

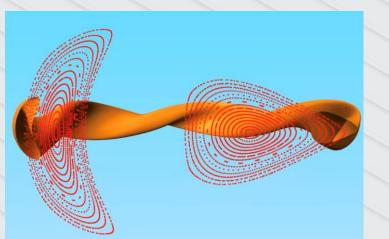


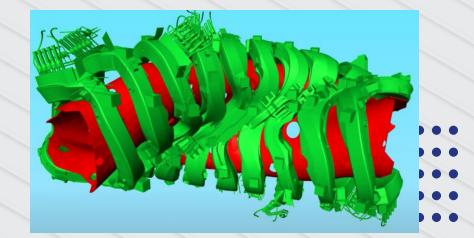


- Current of central coil must be changing
- but the plasma current must be constant
- From Faraday's law, $I_{\rm plasma} \propto \frac{\omega}{dt} I_{\rm coil}$
- Current of central coil must increase linearly, until reaching technical limit

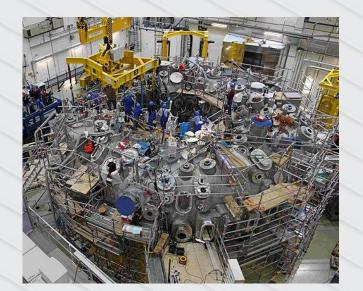


Design 2: Stellarator


- Started by US in 1950s, kept modifying
- Twisted coil and twisted torus
- Complex details calculated by modern computer



- Complex & well-calculated B-field patterns stabilize the plasma
- Circulating coils currents are in superconducting state
- Do not need energy input after starting up
- Can operate continuously



Problems of Stellarator

0

- High construction cost
- Requires high precision of engineering (up to few mm)

- Output energy << Input energy (ratio of ~0.02)
 - Better designs
 - Better materials for conducting wires (graphene, YBCO)
- High construction cost and difficulties
 - Precision
 - Large in size

"Sustainable energy"

- Large amount of water will be consumed to extract fuel (Deuterium & Lithium)
- Environmental threats from large-scale of fuel acquisition
- Lithium also as essential to batteries

Conclusion

- Confinement issue is the main obstacle of nuclear fusion
- Difficult to produce sustainable, efficient nuclear fusion reaction
- Recent materials is not capable enough to carry practical nuclear fusion

Reference

- J. P. Freidberg, "Plasma Physics and Fusion Energy" (CUP 2010).
- Ariola, M., & Pironti, A. (2008). Magnetic control of tokamak plasmas (Vol. 187). London: Springer.
- Bradshaw, A. M., Hamacher, T., & Fischer, U. (2011). Is nuclear fusion a sustainable energy form?. Fusion Engineering and Design, 86(9-11), 2770-2773.
- 1 NUCLEAR RADIATION, ITS INTERACTION WITH MATTER AND RADIOISOTOPE DECAY, MICHAEL F.L'ANNUNZIATA, The Montague Group, P.O. Box 5033, Oceanside, CA 92052-5033, USA
 https://www.sciencedirect.com/science/article/pii/B9780124366039500065#cesec34
- NRL Plasma Formulary, 2006 Revision, p. 58.
- Chapter 7 Inertial-Confinement Fusion Author links open overlay panelGarryMcCrackenPeterStott
- Nuclear Fusion Power Author links open overlay panelM.R.GordinieraJ.W.DavisaF.R.ScottbK.R.Schultzc a McDonnell Douglas Astronautics, Boeing Company, Huntington Beach, California, USA
- National Ignition Facility & Photon Science https://lasers.llnl.gov/

